
Modular Arithmetic: From Ancient India to
Public-Key Cryptography

T.R.N. Rao1 and Chung-Huang Yang2

1The Center for Advanced Computer Studies

University of Louisiana at Lafayette
P.O. Box 44330

Lafayette, LA 70504-4330
U.S.A.

trn@cacs.louisiana.edu

2Graduate Institute of Information and Computer Education
National Kaohsiung Normal University

116, Ho-Ping 1st Road
Kaohsiung 802

TAIWAN
chyang@computer.org

Abstract. We begin with an algorithm from Aryabhatiya, for solving the indeterminate equation a·x + c = b·y of
degree one (also known as Diophantine equation) and its extension to solve the system of two residues X mod mi
= Xi (for i =1, 2). This contribution known as Aryabhatiya Algorithm (AA) is very profound in the sense that
the problem of two congruences was solved with just one modular inverse operation and a modular reduction to
a smaller modulus than the compound modulus. We extend AA to any set of t residues and is stated as
Aryabhata Remainder Theorem (ART) and an iterative algorithm is given to solve for t moduli mi (i=1, 2,…, t).
The ART, which has much in common with Extended Euclidean Algorithm (EEA), Chinese Remainder
Theorem (CRT) and Garner’s algorithm (GA), is shown to have a complexity comparable or better than CRT
and GA.
Key words: Diophantine equation, Aryabhata, systems of congruences, modular arithmetic, residue number
system, modular inverse.

1. Introduction

We begin with an algorithm of Aryabhata (I. Pearce [10] states: “we can accurately claim that Aryabhata
was born in 476 A.D., ... he was 23 years old when he wrote his most significant mathematical work
Aryabhatiya in 499 A.D….”) found in the text Aryabhatiya [2], [6], [12], which solves the linear
indeterminate equation, a·x + c = b·y, for positive integers a, b and c (sometimes called Diophantine
equation). This algorithm also solves for X, given the pair of residues X mod mi = xi (for i = 1, 2). There
is some underlying principle of simplicity in this solution, which has been found to be applicable to
solving the general case of n residues in an iterative manner and requiring as few inverse operations as
any we know of today and also without the necessity for a final modular reduction operation. This leads
us to state these as Aryabhata Remainder Theorem (ART) and the ART algorithm presented here is
comparable and in some ways more efficient than the CRT algorithm of Gauss [4], the original Garner’s
Algorithm [3], and the later version of GA given in [8],[9].

1.1 Aryabhata Algorithm (AA)

In the field of pure mathematics, one of the most significant contributions of Aryabhata is his solution to
the indeterminate equation a · x + c = b · y. We copy here the example and discussion given by Pearce
[10] from Aryabhatiya [2], [12]

 Example1: 137 · x + 10 = 60 · y (1)

 60)137(2 (60 divides into 137 twice with remainder 17, etc)
 120

 17)60 (3
 51

 9)17 (1
 9

) 9 (1
 8 8

1

 2
The column of quotients known as Valli (Vertical line) is constructed: 3

 1
 1

- 2 -

Comment: This method was called Kuttaka, which literally means ‘pulverizer’, on account of the process
of continued division that is carried out to obtain successively smaller remainders. This is traditionally
called Euclidean algorithm. This process in traditional textbook format of n equations is as follows:

 a = b · q1 + r1
 b = r1 · q2 + r2
 . (2)
 .
 rn-2 = rn-1 · qn + rn

In some books [1], the above is given as continued fraction version of Euclid’s algorithm. The number of
quotients, omitting the first one is 3, which is odd. Hence we choose a multiplier k such that on
multiplication by the last residue, 1 (in dashed rectangle), and subtracting 10 from the product the result is
divisible by the penultimate remainder, 8 (in dashed circle). If the number of quotients after omitting the
first one, is even then adding 10 is required instead of subtracting.
 We have 1 · 18 - 10 = 1 · 8. Then we can form the following table:

2 2 2 2 297

3 3 3 130 130

1 1 37 37

1 19 19

 k = 18 18

1

This can be explained as follows:
The number 18, and the number above it in the first column, multiplied and added to the number

below it, gives the last but one number in the second column. Thus, 18 · 1 + 1 = 19. The same process is

- 3 -

applied to the second column, giving the third column that is 19 · 1 + 18 = 37. Similarly 37 · 3 + 19 = 130,
130 · 2 + 37 = 297. Then x = 130, y = 297 are solutions of the given equation. Noting that 297 (mod 137)
= 23 and 130 (mod 60) = 10, we get x = 10 and y = 23 as simple solutions. Thus we have 137 · 10 + 10 =
60 · 23 as a solution for Equation (1).

1.2 Improved Aryabhata Algorithm (IAA)

We show how to simplify considerably the above procedure. First replace c with d = gcd (a, b) = gcd
(137, 60) = 1 in the Equation (1) to get:

Example 2: 137 · x + 1 = 60 · y (3)

we obtain qi as before. Form a table with the first column as the iteration variable i, and the Valli of qi as
the second column. The third column of Si is obtained from bottom up in a similar manner as in the
Example 1. We start with S5 = 1, S4 = q4 as initial values and use the recursion formula:

 Si= qi · Si+1 + Si+2 (4)

i qi Si

1 2 16
2 3 7
3 1 2
4 1 1
5 -- 1

We compute the Si’s from the bottom up

S3 = q3 · S4 + S5 = 1· 1 + 1 = 2
S2 = q2 · S3 + S4 = 3· 2 + 1 = 7
S1 = q1 · S2 + S3 = 2· 7 + 2 = 16

We note the number of quotients n = 4, and gcd (137, 60) = d = 1. We give the answer to Equation (3) as
137 · S2 + (-1)n d = 60 · S1. Thus, we have 137 · 7 + 1 = 60 · 16. To solve Equation (1), we multiply the
solution for Equation (3) by 10 to get 137 · 70 + 10 = 60 · 160. By taking out 137 · 60 from both sides, we
get the simple solution 137 · 10 + 10 = 60 · 23.

Improved Aryabhata Algorithm (IAA) for solving a · x + d = b · y

INPUT : a and b are positive integers and d = gcd (a, b)

1. i ← 1, r-1 = a, r0 = b

2. while (ri ← ri-2 mod ri-1 ∫ 0) do the following:

qi ← quotient (ri-2 / ri-1)
i ← i + 1

3. n ← i-1, Sn+1 = 1, Sn = qn

4. For i from n-2 downto 1 do the following

- 4 -

Si= qi · Si+1 + Si+2

OUTPUT : x = [(-1)n · S2] mod b, y = [(-1)n · S1] mod a

Definition 1: We define the value for S1 to be optimal if 0 < S1 < a, and S2 to be optimal if 0 < S2 < b.
Any solution to a·x + c = b·y is said to be optimal if 0 < x < b or 0 < y < a.

Comment: Lemma 1, given later shows that IAA, gets optimal values for S1 and S2.

The relevance of the solution 137 · 7 + 1 = 60 · 16 for us is that 137-1 mod 60 = -7 mod 60 = 53 and 60-1

mod 137 = 16 . Thus we get both inverses, a-1 mod b and b-1 mod a by this method. Also these lead us
to the solution to the problem of two residues as shown in Section 2.

The theory behind the results of the above two examples can be put in the form of two lemmas and a
theorem as follows.

Lemma 1: Let a, b, c, qi, ri, Si, d and n are as defined in the previous examples. For a · x + d = b · y, IAA
yields optimal values for S1 and S2 , i.e. 0 < S1 < a, and 0 < S2 < b.

Lemma 2: The optimal solution to a · x + d = b · y is given by:
 x = [(-1)n · S2] mod b,
 y = [(-1)n · S1] mod a.

Theorem 1: An optimal solution to a · x + c = b · y is given by:

 x = [(-1)n · S2 (c/d)] mod b
 y = (-1)n · S1 (c/d) + ka, where k = {x - [(-1)n · S2 (c/d)]}/b

The proofs of these are simple and are not required to understand what follows and therefore we
conveniently move them to the Appendix. For clearer understanding, a few examples are also provided
there.

2. The Problem of Two Residues

Consider X mod 60 = 0 and X mod 137 = 10. Clearly X = 60.y for some y and also X = 137x + 10 for
some x. That means solving 137 · x + 10 = 60 · y, which we did in the previous section. Thus X = 60 · 23
= 1380. Let us now modify the problem slightly by adding a 5 to both of the residues. Then we have
X mod 60 = 5 and X mod 137 = 15.

The answer here is just to add 5 to the previous solution and we get X = 1385.
This is the very important underlying principle in Aryabhata’s solution to the problem of two residues.
That is, to solve the problem of two residues first solving the Diophantine equation a · x + c = b · y and
then adding a constant. Solving the equation amounts to finding the modular inverse of b mod a and
then a modular multiplication with c mod a. This is a profound and significant contribution of Aryabhata,
which should be recognized by the cryptology community. Its extension for the t-moduli we present here
will be also of great importance due to the PCKS #1 v2.1 of RSA cryptographic standard [11], which
discusses modulus n of 2048 bits, a composite of four primes each of 512 bits. In this context, every
contribution in residue operations, and number conversions will become important for now and the future.

- 5 -

This was called Aryabhata Algorithm (AA) by Kak [6]. That paper also contained a detailed historical
presentation on the system of multiple residues in India and the work of Sun Tzu and others in China. He
also discusses how the Aryabhata algorithm was used to solve problems in Astronomy in India. Here we
develop the solution as a formal theorem and call it Aryabhata Reminder Theorem (ART) as a tribute to
perhaps the greatest mathematician and astronomer of the classical period (5th century to 12th century A.
D.).

2.1 Aryabhata Remainder Theorem (ART)

Theorem (ART): Let m1 and m2 be relatively prime moduli and M = m1m2.
Given X mod m1 = x1 , X mod m2 = x2,

 X has a unique solution in ZM given by:

 X = ART (x1, x2; m1, m2; M)
 = ART (0, c; m1, m2; M) + x1 where c = (x2 –x1) mod m2
 = A + x1 , where A = m1 [(c · m1

 -1) mod m2].

Proof: First we show that X = A + x1 ∈ ZM. Since A = m1 · b for some b ∈ Zm2

 , A must be less than or
equal to m1(m2-1). Since x1 < m1, A + x1 must be less than M = m1m2 and therefore X ∈ ZM. Now consider
(A + x1) mod m1. Since A is a multiple of m1, we have (A + x1) mod m1 = x1. Since A mod m2 = c due to
the cancellation of the terms m1 and m1

 -1, we have (A + x1) mod m2 = c + x1 = x2. Thus A + x1 = X satisfies
the two congruences as required and is a solution in ZM. It is easy to show that A + x1 is a unique solution
in ZM. If Y ∈ ZM is another solution, then (X - Y) mod mi = 0, for i = 1, 2 and (X - Y) mod M = 0. Thus X =
Y.
A formal extension of ART to any number of moduli is rather straight forward and is given Section 5.
Here we illustrate by an example.

Example 3:
Let X mod 3 = x1 = 1, X mod 4 = x2 = 3, and X mod 5 = x3 = 3.
Then X = ART (1, 3, 3; 3, 4, 5; 60)
Step 1
 X’ = X mod 12 = ART (1, 3; 3, 4; 12)
 = ART (0, 2; 3, 4; 12) + 1
 = 3 [(2 · 3-1) mod 4] + 1
 = 3 · 2 + 1 = 7
Step 2
 X = ART (7, 3; 12, 5; 60)
 = ART (0, (3-7) mod 5; 12, 5; 60) + 7
 = ART (0, 1; 12, 5; 60) + 7
 = 12 [(1 · 12-1) mod 5] + 7
 = 12 · 3 + 7 = 43

3. Multiplicative Inverse

Given positive pairwise prime integers a and b, it is very often necessary to find a -1 mod b. That

is, to find x ∈ Zb such that a · x mod b = 1. In RSA, the private key d is generated by finding the inverse of
public-key e mod Ø(n), where Ø(n) = (p-1)(q-1). The Extended Euclidean Algorithm (EEA) [8], [9] given
below obtains a · x + b · y = 1, for given a and b. Finding the multiplicative inverse is illustrated by the
Example (4) given below:

- 6 -

Extended Euclidean Algorithm: The extended Euclidean algorithm is available in most texts [8], [9]. The
simpler version of Euclidean algorithm from [7] will illustrate the principle as well.

Example 4: Let a = 137 and b = 60.

i r i q i xi yi

-1 137 1 0
0 60 - 0 1
1 17 2 1 -2
2 9 3 -3 7
3 8 1 4 -9
4 1 1 -7 16
5 0

qi ← quotient(ri-2 /r i-1), ri ← ri-2 mod ri-1

 xi ← xi-2 - qi · xi-1 , yi ← yi-2 - qi · yi-1

From the table above we have x = -7 mod 60 = 53 and y = 16. Therefore
137 -1 mod 60 = -7 mod 60 = 53 and 60 -1 mod 137 = 16.

EEA requires series of successive division steps as in GCD algorithm, while calculating xi and yi
iteratively and ultimately to obtain the final values. This procedure requires n divisions, 2n multiplications,
and 2n subtractions, where n is the number of iterations; However IAA requires n divisions and n-2
multiplications and n-2 additions to find s2, the inverse of a mod b. While EEA derives the values xi and yi
in a forward direction as qi are generated, IAA will have to generate all qi ‘s and then apply the iterations
in a reverse manner. This requires storing qi ‘s and is indeed an undesirable feature. Thus EEA algorithm
is superior in that sense. Also if one needs only one inverse (i.e., a-1 mod b) yi column is not required and
in that case, just n multiplication and subtraction steps are needed. Knuth [8] obtains n, the average
number of divisions required for GCD for given x and a random y < x by the formula

 n ≈ 1.94 log10 x.
 For a 100 digit decimal number a, and a randomly chosen b < a, the average number of division
steps will be about 194.

Multiplicative Inverse Algorithm

EEA can be improved to perform better if only one inverse is required. For instance if a -1 mod b is
required for a > b, We may just as well begin with a mod b = c and find c -1 mod b. In that case, the xi
computation will be of one less step. Further if the initial values are set appropriately the inverse can be
obtained in n-2 forward steps (each step: one multiplication and one addition) the same number of steps as
in IAA (Section 1.2). We illustrate this by the same example as before and by a table given below.

Example 5: Find: 137 -1 mod 60 (a = 137 and b = 60)
We start with r0 = b = 60, r1 = a mod 60 = 17 and x1 = 1. The iterations begin from i = 2 with the normal
division process: qi ← quotient(ri-2 /r i-1), ri ← ri-2 mod r i-1 and x2 = q2 .
The iteration proceeds: xi ← xi-1 · qi + xi-2 (for i > 2).

i r i q i xi

0 60 - -
1 17 - 1

- 7 -

2 9 3 3
3 8 1 4
4 1 1 7
 5 0

From the above we observe the following:
 a · xi (-1)i-1 mod b = ri for i ≥ 1, 137 · 7(-1)4-1 mod 60 = 1,
 X = 137-1 mod 60 = 60 - 7 = 53.
We can now state the following

Lemma 3: Let a, b, ri, qi, and xi be defined as above. Then a -1 mod b exists iff xn = 1, (for some n >1)
and is given by

a -1 mod b = xn (-1) n-1

Proof: First, we need to prove that a · xi (-1)i-1 mod b = ri holds for i ≥ 1. For i = 1, we have x1 = 1
and a · x1 (-1)i-1 mod b = r1 . For i = 2, we have the division equation r2 = r0 - q2 · r1 = r0 - x2 · r1 .
Taking mod b on both sides, we get (- x2) · r1 mod b = r2 , which is same as (- x2) a mod b = r2 .
For i = 3, we start with r3 = r1 - q3 · r2 = r1 · x1 - q3 (r0 - x2 · r1) = r1 (x2 · q3 + x1) - q3 · r0 = r1 · x3 -
q3 · r0 . Taking mod b on both sides, we have r1 · x3 mod b = r3 and a · x3 mod b = r3 . Continuing this
process, we obtain a · xn (-1) n-1

 mod b = rn = 1 and a -1 mod b = xn (-1) n-1 .

Algorithm for a-1 mod b :

Step 1. r0 ← b
 r1 ← a mod b
 if r1 = 0, then goto Step 4

 else x1 ← 1
 ι ← 2

Step 2. qi ← quotient(ri-2 /r i-1)
 ri ← ri-2 mod r i-1

 If ri = 0, then go to step 3
 else if i =2, then xi ← qi
 else xi ← xi-1 · qi + xi-2

 i ← i + 1
go to Step 2

Step 3. If ri-1 = 1, then if i is even,

 then return (xi)
 else return (b - xi)

Step 4. print “ Inverse does not exist”

4. Chinese Remainder Theorem (CRT)

Let X = CRT (v1, v2,…,vt ; m1,m2,…,mt; M = ∏ ti=1 mi) for (mi , mj)= 1, for all i ≠ j. Then X is given by

X = [Σ t i=1 vi (M/mi)yi] mod M , where yi = (M/mi)-1 mod mi

- 8 -

Example 5: X = CRT (2, 1, 3, 8 ; 5, 7, 11, 13 ; 5005)

y 1 = (5005 / 5) -1 mod 5 = (1001) -1 mod 5 = 1
y 2 = (5005 / 7) -1 mod 7 = (715) -1 mod 7 = 1
y 3 = (5005 / 11) -1 mod 11 = (455) -1 mod 11 = 3
y 4 = (5005 / 13) -1 mod 13 = (385) -1 mod 13 = 5

X = 2 · 1001 · 1 + 1 · 715 · 1 + 3 · 455 · 3 + 8 · 38 · 5
 = (2002 + 715 + 4095 +385) mod 5005 = 2192

Comments: CRT requires t inverse operations and a reduction operation modulo M. As explained in [9]
the number of bit operations O(k2 t2) = O(n2), where k is the maximum bit size of the residues and n is the
combined number of bits in modular representation of v(x).

Garner’s Algorithm (GA)

Garner [3] deduced an algorithm to convert residue code of a number X= (v1, v2, ….., vt) with respect to
pairwise relatively prime modulo m1 , m2 ,…, mt to a mixed radix number with weight 1, mt, mt-1mt , and
so on upto the last one m2m3…mt . Then its radix equivalent can be easily computed using those weights.
As example he chose (1, 2, 0, 4) for moduli set (2, 3, 5, 7) and converted to mixed radix form of (0, 2, 3, 4)
whose weights are (105, 35, 7, 1) respectively. Then X = (1, 2, 0, 4) represented 0 · 105 + 2 · 35 + 3 · 7 +
4 = 95. A refined version of Garner’s algorithm has been given in [9] as follows:

INPUT : a positive integer M = ∏t

i=1 mi, with gcd (mi, mj) = 1 for all i ≠ j, and a modular representation
v(x) = (v1, v2,…,vt) of x for the mi .

OUTPUT: the integer x in radix b representation.

 1. For i from 2 to t do the following:
 Ci ← 1.
 For j from 1 to (i-1) do the following:
 u ← mj

-1 mod mi

 Ci ← u · Ci mod mi

 2. u ← v1 , x ← u

 3. For i from 2 to t do the following : u ← (vi - x) · Ci mod mi ,
 x ← x+ u · ∏ i-1

j=1 mj
 4. Return (x).

 x returned by Algorithm (GA) satisfies 0 ≤ x < M, x ≡ vi (mod mi), 1 ≤ i ≤ t.

Example 6: (Garner’s algorithm) [9]: Let m1 = 5, m2 = 7, m3 =11, m4 =13, M = ∏ 4

i=1 mi = 5005, and v(x)
= (2, 1, 3, 8). The constants Ci = computed are C2 = 3, C3 = 6, C4 = 5. The values if (i , u , x) computed in
step 3 of algorithm are (1, 2, 2), (2, 4, 22), (3, 7, 267) and (4, 5, 2192). Hence, the modular representation
v(x) = (2, 1, 3, 8) corresponds to the integer X = 2192.

Menezes et. al. [9] provide a discussion on computational efficiency of GA as follows:
“If Garner’s algorithm is used repeatedly with the same modulus M and the same factors of M, then step 1 can be
considered as a precomputation, requiring the storage of t-1 numbers. The classical algorithm for the CRT typically

- 9 -

requires a modular reduction with modulus M, whereas Garner’s algorithm does not. Suppose M is a kt-bit integer
and each mi is a k-bit integer. A modular reduction by M takes O((kt)2) bit operations. Whereas a modular
reduction by mi takes O(k2) bit operations. Since Garner’s algorithm only does modular reduction with mi, 2 ≤ i ≤ t,
it takes O(t k2)bit operations in total for the reduction phase, and is thus more efficient.”

However, GA requires t(t-1)/2 inverse mod mi operations. Since inverse requires O(k2) bit
operations the complexity of inversions is O(t2k2). CRT requires mod M reduction which has a complexity
of O(log M) 2 = O(t2 k2).The original algorithm of Garner [3] required only t–1 inversions but required a
considerably larger number of modular reductions O(k2) and residue vector operations of the O(t). The
overall complexity of GA can be shown to be O(t2 k2). The ART algorithm developed in next section
requires only t-1 inversions. Also as in GA, it does not require mod M reduction and thus has a complexity
is O(t k2) bit operations.

5. ART-Algorithm

The underlying principle behind the Aryabhata’s solution for the problem of two residues is that it
requires only one modular inverse operation and any modular reduction is to the smaller moduli mi rather
than to composite M. This simplicity is of paramount importance. This principle has been exploited in
many applications and the performance, for instance, of RSA signature has improved for smart-card
processors by a factor greater than 3.6 [5], [11]. ART-algorithm is an extension of this principle to t
moduli.

X = ART(v1, v2,…, vt; m1, m2,…, mt ; M)
Step 1 : X1 = v1

Step 2 : X2 = ART (v1 , v2 ; m1, m2 ; M2) M2 = m1 m2
 = ART (0 , | v2-v1| m2

 ; m1 , m2 ; M2) + v1

Step 3 : X3 = ART (X2, v3 ; M2, m3 ; M3) M3 = m1 m2 m3
 = ART (0, |v3- X2| m3

 ;M2, m3 ; M3) + v2

………

Step t : X t = ART (Xt-1, vt ;Mt-1, mt ;Mt) Mt = M
 = ART (0, | vt – X t-1| mt

 ; Mt-1, mt ; Mt) + vt

The algorithmic form of the above is as follows:

 INPUT : a positive integer M = ∏t

i=1 mi, with gcd (mi , mj) = 1 for all i ≠ j, and a modular
representation v(x) = (v1, v2,….. ,vt) of x for the mi .

 1. N1 ← 1, X1 ← v1

 2. For i from 2 to t do the following:

Ni ← Ni-1 · mi-1

Ci ← Ni
-1 mod mi (also denote | Ni

-1 | mi))

Ui ← [(vi - Xi-1) · Ci] mod mi

Xi ← Xi -1 + Ui · Ni

- 10 -

OUTPUT : Return Xt

This is illustrated by

Example 7: Find X = ART (2, 1, 3, 8 ; 5, 7, 11, 13 ; 5005)

i Ni Ni mod mi Ci Ui Xi

1 1 -- -- -- 2

2

 5 5 | 5 -1 |7 = 3 |(1-2) · 3|7 = 4 2+ 4 · 5 = 22

3

5 · 7 = 35 |35|11 = 2 | 2 -1 |11 = 6 |(3-22) · 6|11 = 7 22+7 · 35 = 267

4

35 · 11 = 385 |385|13 = 8 |8 -1|13 = 5 |(8-267) · 5|13 = 5 267+5 · 385 = 2192

The Step 2, 3, and 4 in the Table are iteration of the ART, solving for 2 residues in each of these steps.
The final value X = X4 = 2192.

6. Conclusion

The underlying principle behind the Aryabhata’s solution for the problem of two residues and its
simplicity are of paramount importance. Historians of mathematics have acknowledged this fact by
writing about Aryabhata Algorithm (Kak 1986, [6]), but as part of the cryptology community, we are now
trying to redress this balance. This principle has been reinvented and quite independently by Garner and
exploited in many applications by others [5], [11]. However Aryabhata has not been recognized for this
contribution where ever CRT is mentioned. We provided here Aryabhata Remainder Theorem as an
extension to t moduli of his original contribution. Its complexity is shown to be comparable or better than
CRT and GA.

References

[1] E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, 1968.
[2] W.E. Clark, The Aryahbatiya of Aryabhata, University of Chicago Press, Chicago, 1930.
[3] H. Garner, “The residue number system”, IRE Transactions on Electronic Computers, Vol. EC-

8, pp. 140–147, 1959.
[4] C.F. Gauss, Disquisitiones Arithmeticae, 1801. English translation by Arthur A. Clarke,

Springer-Verlag, New York, 1986.
[5] H. Handschuh and P. Paillier, "Smart Card Crypto-Coprocessors for Public-Key Cryptography,"

CryptoBytes, Vol. 4, No. 1, pp. 6-11, 1998.
[6] S. Kak, “Computational Aspects of the Aryabhata Algorithm,” Indian Journal of History of

Science, Vol. 21, No. 1, pp. 62-71, 1986.
[7] C. Kaufman, R. Perlman, and M. Speciner, Network Security: Private Communication in a

Public World, 2nd edition, Prentice Hall, 2002.
[8] D.E. Knuth, The Art of Computer Programming – Seminumerical Algorithms, volume 2,

Addison-Wesley, Reading, Massachusetts, 2nd edition, 1981.
[9] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, Handbook of Applied Cryptography (CRC

Press Series on Discrete Mathematics and Its Applications), 1996.
[10] I.G. Pearce, Indian Mathematics: Redressing the Balance, http://www-history.mcs.st-

- 11 -

andrews.ac.uk/history/Projects/Pearce/index.html
[11] RSA Laboratories, Public-Key Cryptography Standards, PKCS#1, Version 2.1,

http://www.rsasecurity.com/rsalabs/pkcs
[12] C. N. Srinivasiengar, The History of Ancient Indian Mathematics, World Press, Calcutta, 1967.

Appendix

For the following lemmas and the discussion, let a, b, c, qi, ri, Si, d and n are as defined in Section 1.

Lemma 1: For a · x + d = b · y, IAA yields optimal values for S1 and S2 , i.e. 0 < S1 < a, and 0 < S2 < b.

Proof: First, we note the ordering a > b > r1 > r2 >…………..> rn = d ≥ 1
Also we have rn-1 > Sn+1 = 1 and rn-2 > qn = Sn as a starter. Then using the last division equation we have
rn-3 = rn-2 · qn-1 + rn-1 > Sn · qn-1 + Sn+1 = Sn-1 , giving us rn-3 > Sn-1 .

Continuing this to the next division equation we get rn-4 > Sn-2. This procedure leads us to
r0 > S2 and r-1 > S1 . Since b = r0 and a = r-1 , we have the lemma proved.

Lemma 2: The optimal solution to a · x + d = b · y is given by:
 x = [(-1)n · S2] mod b,
 y = [(-1)n · S1] mod a.

Proof: We start with the nth equation of Kuttaka (Sequence of divisions)
 d = rn = rn-2 – rn-1 · qn
Since Sn+1 = 1 and Sn= qn we can write the above as
 d = rn-2 · Sn+1 – rn-1 · Sn. .
Substituting the equation for rn-1 in the above we get

 d = rn-2 · Sn+1 – (rn-3 – rn-2 · qn-1) Sn
 = rn-2(q n-1 · Sn + Sn+1) – rn-3 · Sn
 = rn-2 · Sn-1 – rn-3 · Sn
 = (rn-3 · Sn – rn-2 · Sn-1)(-1).

Continuing the substitution for rn-2,, rn-3,,………we get successively
 d = (rn-4 · Sn-1 - rn-3 · Sn-2) (-1)2 and finally
 d = (a · S2 – b · S1)(-1)n-1 .
The last equation can be rewritten as
 a · S2 (-1)n + d = b · S1 (-1)n .
A solution to a x + d = b y follows easily from the above as:
 x = S2 (-1)n ,
 y = S1 (-1)n .
From Lemma 1 we note that 0 < S1 < a, and 0 < S2 < b. Consider placing mod b and mod a to the above
equations respectively. When n is even that makes no difference. When n is odd, it amounts to adding b
to - S2 and a to -S1, which amounts to adding a · b to both sides of the equation, while making x and y
positive optimal values. This completes the proof.

A few examples will illustrate the application of kuttaka and the above lemmas.

- 12 -

Example 8: 17 x + 1 = 4 y. By using kuttaka and IAA, we obtain S1 = 4, S2 = 1 and n = 1. As one
solution we have 17 (-1) + 1 = 4 (-4). Taking the respective moduli, we have –1 mod 4 = 3 and - 4 mod
17 = 13, giving us the optimal solution 17 · 3 + 1 = 4 · 13.

Example 9: 7 x + 1 = 4 y. By using kuttaka and IAA, we obtain S1 = 2, S2 = 1 and n = 2. As one
solution we have 7 (1) + 1 = 4 (2). Here both values for x = 1 and y = 2 are optimal.

For a more general case, let us make c = 11 in the above example.

Example 10: 7 x + 11 = 4 y.

Multiplying the previous solution by 11 we get 7 · 11 + 11 = 4 · (2 · 11). To obtain an optimal solution,
we may apply the modular reduction 11 mod 4 = 3 and 22 mod 7 = 1. Then we get 7 · 3 + 11 = 4 · 1,
clearly a false solution. The correct way to get an optimal solution is to subtract (or add) a suitable
multiple of a · b to both sides of the equation to obtain an optimal value for either x or y. If we subtract
2ab from both sides, then we have 7 · (11 – 2 · 4) +11 = 4 · (22 – 2 · 7), yielding 7 · 3 + 11 = 4 · 8, a
correct solution. Here the solution is optimal, since x = 3 is optimal. Note, in this case, y = 8 is not optimal
but the solution, however, is optimal by Definition 1.

As an easy extension to the general case a · x + c = b · y (for c, a multiple of d), we have a solution x’ =
(-1)n · S2 (c/d) and y’ = (-1)n · S1 (c/d). Here x’ and y’ may not be optimal. To obtain an optimal solution,
we consider adding kb to x’ and ka to y’ such that at least one of them becomes optimal. For that we first
take modular reduction x = x’ mod b. Then x = x’ + kb for some k. To balance the equation we take y
= y’ + ka. This proves the following:

Theorem 1: An optimal solution to a · x + c = b · y is given by:

 x = [(-1)n · S2 (c/d)] mod b,
 y = (-1)n · S1 (c/d) + ka, where k = {x - [(-1)n · S2 (c/d)]}/b.

