

High Speed Software Driven AES Algorithm on IC Smartcards

Chi-Feng Lu1, Yan-Shun Kao2 Hsia-Ling Chiang3 Chung-Huang Yang4

 Abstract Despite AES is surpass in security than DES, it is still rare to be implemented in smart cards, due to the
reason of deficient in AES coprocessors. Here a chip operation system (COS) called NexCard, which derived from
Microsoft’s Windows COS, is used as the AES implement platform. After a suitable COS architecture design for AES and
methodology of efficient memory usage, the simulation result shows that direct embedding AES Encryption may attain
0.56ms at system clock 15 MHz on the INFINEON SLE66CX322P chip without existence of coprocessor.
Corresponding to the development needs in smart card cryptographic algorithms implementations, and different level of
the security design specifications, a concept to conjoint numbers of algorithms into single smart card called cipher system
on demand (CSOD) method is accomplished in this study concurrent. This is a method utilizing the multi-application
capability of NexCard v2.0 to execute same AES algorithm as an on card applet. Although the performance of CSOD is
not as good as AES embedded method; CSOD can provide same result in the situation of adaptability and extendibility is
concerned over performance

 Keyword: Smartcard, AES, encryption, virtual machine

1 Introduction
Both hardware chip architecture and software chip

operation system (COS) [1] security mechanisms consist
in smart cards have made them the widely employed
security hardware in communication, digital verification
and financial applications. Commonly, internal Data
Encryption Standard (DES) [2] algorithm computation is
offered in most of the smart cards available at current.
But regarding the fact that the 56 bits DES algorithm has
been broken [3] and while NIST was requesting a new
algorithm globally, Rijndael algorithm was chosen and
announced to replace the DES as national standard,
called Advanced Encryption Standard (AES) [4-5], the
smart cards are indeed need to update the existing
build-in algorithm accordingly for enhancing security
reliability.

According to NIST [6], DES algorithm can be

easily broken in few hours with dedicated computer.

1 Division of Research & Development, NexSmart Technology,
Inc. 3F-2, No. 23, Sec. 6, Min Chuan E. Road., Taipei, Taiwan
114, http://www.nexsmart.com/, jacky@nexsmart.com.tw
2 kent@nexsmart.com.tw
3 Department of Electrical Engineering, Kuang Wu Institute of
Technology, No. 151, I-te Street, Peitou, Taipei, Taiwan,
acl2@ms37.hinet.net
4 Institute of Information and Computer Education, National
Kaohsiung Normal University, 116, Ho Ping First Road,
Kaohsiung, TAIWAN, http://crypto.nknu.edu.tw/,
chyang@computer.org

Assuming that one could build a “DES Cracker”
machine that could recover an unknown DES key in one
second, then it would take that machine approximately
149 thousand-billion (149 trillion) years to crack a
128-bit AES key. Although, the safety measurements
demands the advance crypto algorithm in smart card
COS to be implemented, but the fact that, deficient in
AES coprocessor is affecting the progress of
development. As we know, coprocessor is intending to
increase the calculation efficiency in computer process,
and the researches indicate the AES at least three times
faster than DES. Hence, effectively govern the
characteristics of the cautious selection microcontroller;
incorporate with an optimized AES algorithm, and
efficient memory usage arrangement, an AES smart card
chip has proven practical.

Microsoft first set foot in IC Smart Card domain in

1999, and released its first version of WfSC (Windows
for Smart Card) [7] base of Windows architecture, later
on, a multi-Applications capability included version of
WfSC (version 1.1) was officially announced in July
2000. Since the international smart card specific
standards were published by populating international
organizations, for instance, the GOP (Global Open
Platform) specification, it move the essence of
Multi-Applications to a new level, and to satisfied the
security concerns in the e-society, PKI mechanisms were
closely bounded into the core of varies COS. Base on
those reasons, Microsoft released the advanced WfSC
COS specification (version 2.0), which includes GOP

SCIS 2004 The 2004 Symposium on
Cryptography and Information Security

Sendai, Japan, Jan.27-30, 2004
The Institute of Electronics,

Information and Communication Engineers

specification and PKI functionalities. With the maturity of
WfSC 2.0 specification, this study is selecting WfSC 2.0
as our implementation platform.

WfSC v2.0 was originally developed on Atmel

microcontroller a flash memory chip. In this study, we
consider the high level of security requirements in
hardware established in the international information
security standard published by Common Criteria, the
study is taken approach with form of masking COS into
the microcontroller, Infineon SLE66CX322P [8] is the
target microcontroller for our WfSC 2.0 COS
implementation and named NexCard 2.0. The
infrastructure of NexCard 2.0 is shown as Figure 1.

Figure 1: NexCard COS Architecture

Since the SLE66CX322P contains an

8051-compatible microprocessor, 136-Kbyte ROM,
32-Kbyte EEPROM, 5K-byte RAM, an 1100-bit
arithmetic coprocessor, and two auto-reload timers,
which is a powerful device suitable for the
implementation of both symmetric and asymmetric
cryptographic algorithms on the smart cards. Figure 2
shows internal block diagram of this chip. The
NexCard 2.0 not only satisfies WfSC 2.0 specification,
the built-in cryptographic algorithms also include RSA,
DES, DES3, SHA1 etc., which is a full functional PKI
card.

8051-compatible
CPU

I/O Port
Random
Number

Generator

ROM: 136K bytes

RAM: 5K bytes

EEPROM: 32K bytes

Vcc
Vss

RST
CLK

I/O

1100-bit Modular Arithmetic
Coprocessor

Figure 2: Block diagram of SLE66CX322P

The study proposed two approaches to

implement the AES algorithm on NexCard 2.0. First
approach, the algorithm is embedded into foundation
level of COS architecture, the Cryptographic layer, as
normal processes. This method is called “Embedded
Method”. The second approach is using high level
programming languages to interpreted the algorithm in
form of an applet, which sits in the top level of the COS
architecture, the Applet layer, this approach is called
“CSOD Method”. Two approaches will be illustrated
and manifested in detail in this paper.

2 AES Embedded Method

A COS is integrate with Communication,
Command Sets, File System, Authorization, and
Cryptography layers [9], cryptographic calculations are
only just part of the COS architecture, to enhance the
AES calculation, an optimized calculation design, the
efficient memory usage and considering the limitation in
resources and processing power available in smart card
are essential.

NIST defined AES (Rijndael algorithm) is an
iterated block cipher [10] symmetry algorithm. It consists
with one fixed size of 128-bit data block and accompanies
with one 128, 192, or 256 Bits key block, each data block
and key block size is determined independently.

There are 4 basic operations in AES computation
flow:
1. AddRoundKey

Individual element (Byte) in plaintext is updated with
the result of XOR calculation of each element (Byte) of
round key and element of plaintext

2. SubBytes
It is a non-linear byte substitution, with use of a
substitution table (S-Box) which is constructed by
composing two transformations, first, polynomial
m(x)(‘11B’) is ported, followed by an affine
transformation.

3. ShiftRows
The rows of the plaintext block are cyclically shifted
over different offsets.

4. MixColumns
Transformation of four elements in each column of the
plaintext by a polynomial multiplication.

First round of AddRoundKey process is initiated

after plaintext and cipher key are entered, every
following round of process has to go through SubBytes,

ShiftRows, MixColumns and AddRoundKey
computations, the number of rounds are depended on the
length of cipher key, from 10 to 14 rounds [4]. Note the
MixColumns process is not performed in the last round
of AES algorithm.

The suggested optimized AES computation flow
is as follow:

a) Swap SubByte and ShiftRow

On considering the best assembly code combinations
and continuance memory usage, the order of
ByteSub and ShiftRow process in Figure 2 are
swapped, to reduce the number of times in memory
reads and writes, as well as increase the computation
speed without compromised the actual result. The
result of the original process [4] (Figure 3(a)) is
identical to the one computed with swapped process
(Figure 3(b)).

Figure 3: SubBytes and ShiftRows Swapping

b) Rearrange RoundKey Generation

In the key schedule (key expansion) of the standard
AES encryption process, if the calculation order is
also rearranged, the number of memory reads and
writes can further reduced. For instance, with the
standard Key Expansion in 128-bit AES encryption, a
16 bytes key is to be expanded to a 176 bytes round
key. To illustrated each byte of the original cipher key
and produced round keys are represented in array K.
The K0 to K15 are represented as original Cipher
Key, value of the key produced in each round can be
calculated as formula in Figure 4.

Figure 4: Standard Cipher Key Arrangement.

Let XOR denotes the bit-wise exclusive-OR

operation. If the direct addressing (Figure 5) is used in
above calculations, the elements of KRow 1 can be
computed by this formula. First, K0 XOR SBOX
[K13] follow by an XOR with RCon to get K16, then
sequentially, getting K20 by K4 XOR K16, get K24
by K20 XOR K8, and finally get K28 by K24 XOR
K12. The KRow2 to KRow4 is using the same
calculation to computer the cipher key for the next
round.

Figure 5: Suggested Round Key Process

From the proposed key schedule, total only 16

operations of memory accesses have been done,
during key expansion from the first round key (K0 to
K15）to next round key (K16 to K31), comparing
with the standard key arrangement’s 32 operations,
50% of memory access operations are reduced. By
adopting this suggested rearrangement, the round key
in the memory which produced in previous round
could be immediately overwritten with the new one.
And the required memory space can be cut down to
the lowest, which is better fit with the smart card’s
limitation in memory.

c) Reduce Array Tables
MixColumn process is known to be the major
performance bottleneck of AES implementing on the

SLE66CX322P, because of the 8051 microcontroller
characteristic, which has limited support in 16 bits
computation. Due to this difficulty, we replace the
square array computation with looking up
pre-computed array tables and in conjunction with
XOR calculation. Refer to the ANSI C code
published in NIST web site, two tables are used in the
MixColumn process, However, to prevent from the
downgrade in performance caused by the intensive
register usage in table look up, the originated table
constructing method suggested by NIST was
discarded; instead, a modified table constructing
method was used as a base on the MixColum
calculation characteristic, a single table is produced.
By this method, the actual code size is reduced, and
results in a better performance.

3 COS Memory Planning
In this study, COS memory planning should not

only consider efficiency in AES computation, but also
keep in mind in reserving enough memory for other
functions of the COS. Two different executions
approaches stand alone calculation and on-the-fly
calculation are taken during key expansion and cipher
processes to achieve best efficiency and memory usage.
Stand alone means the key expansion and cipher
processes are calculated separately, on the fly approach is
combine key expansion and cipher into one single
process.

In AES algorithm, the size of encryption block in
each round is fixed (16 bytes). That is, both independent
and conjunction approaches will use the same amount of
memory during the encryption process. To find the better
efficiency approach, we only need to focus on the
memory uses during key arrangement.
a) Stand-alone calculations

While using this approach, all round keys are stored in
the memory after key arrangement processes are
completed, the encryption process desired round keys
are remaining in the memory until they are revoked,
the keys can be extracted in sequence when needed
without re-compute. The memory required for this
key arrangement can be calculated using the
following formula:

RKeyLen = KeyLen +（Nr * KeyLen ）------
(1)
where KeyLen is the cipher key length; Nr is the
number of rounds. For 128, 192, and 256 bits long
key, the memory usages is 176 bytes, 312 bytes, and
480 bytes (see formula (1)) accordingly. However,
only XRAM [8] and EEPROM have sufficient

memories available in 8051 microcontroller.

Either, IRAM or XRAM can be used for the
temporary storage area, the data stored is to be cleared
when the reset is instructed to the microcontroller.
That is, if the round keys is stored in XRAM, the
encryption process has to be executed immediately
after the key arrangement, before the memory loses
the stored data by reset instruction or used by other
COS functions. After consider the meaning of
independent key arrangement and encryption, and
ensure the smooth operation of other elements and
functions in COS architecture, select XRAM as
temporary data buffer is not the best choice. If
EEPROM is chosen, because of its characteristic, data
stored will not be cleared by reset or power off, so,
optimizing key arrangement and encryption processes
with the independent approach is possible, but one
thing has to be aware of is the timing in moving data
form EEPROM out to IRAM.

The time needed for moving data out from
EEPROM to IRAM is calculated as:

According to the official data sheet from
INFINEON SLE66CX322P, the parameters K = 4.48,
p = 0.06, offset = 0.27, and with System Clock = 15
MHz , the time to move one AES-128 key from
EEPROM to IRAM (see formula (2) and (3)) is tpr =
4.562 ms, AES-192 is tpr = 4.594 ms, and
AES-256 is tpr = 4.626 ms. If AES encryption is to be
performed, the total time needed for AES-128 to
move all round keys to RAM is 4.562 * 11 rounds (10
+ 1 rounds) = 50.182 ms, AES-192（12 + 1 rounds）
4.594 * 13 = 59.722 ms, and AES-256（14 + 1
rounds）4.626 * 15 = 69.39 ms. So, using this
independent approach, addition of 50ms to 60 ms is
taken in moving round keys out of memory, on top of
the time required in key arrangement and cipher
process. Comply with the objectives of efficient
memory usages and optimized computation
performance, using EEPROM to be the data buffer is
also inappropriate; hence, this independent approach
is not the ideal way to accomplish a high speed AES

algorithm implementation.

b) On-the-fly calculations
This approach is to combine the key arrangement and
cipher process into one single process; in each round
the cipher process is performed right after the key set
is constructed, and the current key set is to be replaced
by the next key set, and ciphering is done again,
cycling the same process until end of the required
computation round.

Follow the AES standard computation process, two

times of round key length is required for the memory, by
calculating different key length AES algorithm. The
memory usage for AES-128 is 128 Bit * 2 = 32 Bytes,
AES-192 is 48 Bytes and AES-256 is 64 Bytes. If the
optimized key arrangement method described in section
2-1 is used, the actual required memory space is equal to
the key length of the AES algorithm. That is, the required
memory can be reduced to 16 bytes for AES-128, 24
bytes for AES-192, and 32 bytes for AES-256. Obviously,
concluding the contentions in point a and b in section 2,
the efficiency of key expansion and cipher combination
process is better than they are calculated independently.

4 CSOD Method

The design aspect of CSOD is to enable
incorporation of new international or proprietary
algorithm programmed in C or VB languages in COS as
the form of applets. To achieve it, a virtual machine (VM)
is constructed in COS to interpret the external applets
(bytes code) to COS executable instructions.

As the standard AES algorithm procedure, a
completed AES applet is consisted with two separate
applets, AES Key Expansion and AES Cipher. Due to
fact, the applets are all stored in EEPROM before
executed, so, no matter the independent or conjunction
approach is used, the data moving out from EEPROM
step can not be avoided, but using independent approach
can cut down the key arrangement process and increasing
the efficiency; hence, CSOD method using the
independent approach in its process. The procedures are
illustrated in Figure 6.

Figure 6: Internal COS Process of Key Expansion and

Cipher Applets

After on-card applets (key expansion or cipher
applet) received external entry of cipher key or plaintext,
the applet byte codes is interpreted by the virtual machine
and execution is initiated, during the execution, if COS
resource is needed, the on-card API is call to assist the
execution. Upon of completion, the calculated round key
or ciphered data is saved to File System through the API.

The AES key schedule applet and encryption
applet are transferred from the host PC through smart
card reader and saved at the EEPROM area of WfSC
v2.0, then the applets could be executed by the VM.
This procedure, including transmission and storage then
execution, took approximately 1 second for key schedule
applet and 5 seconds for encryption applet on the
ATMEL AT903232C -based virtual machine.

5 Implementations

A time consuming process, ROM Masking is
mandatory for INFINEON SLE66CX322P
microcontroller to produce a physical card, all data
produced in this paper is collected by execute the
program in the KSC SLE66CX322P in-circuit hardware
emulator. The COS design and AES algorithm
optimization described in this study is base on the
released AES algorithm specification from NIST. The
efficiency comparison of different AES key length is
shown in the following table.

Table 1: Computation Efficiency with Infineon
SLE66CX322P Microcontroller

Key length
Number of

cycles
Speed Code length

128 8460 0.56 ms 1013 Bytes

192 12580 0.83 ms 1352 Bytes

256 14875 0.99 ms 1160 Bytes
Note：Internal System Clock : 15 MHz

Unfortunate, there is not available AES on-card

under similar conditions to compare with our study, the
AES algorithm implementation on Intel 8051 chip by the
original AES author is compared instead. The throughput
is converted into 8051 chip; the result is illustrated in
Figure 7.

In Figure 7, the result clearly shown the final
throughput of this study is better than the author
publication.

In testing CSOD method, we select ATMEL
AT903232C as the target controller; the NexCard COS is
flash burned to the microcontroller, before the AES
applets is loaded on to it. With the physical card testing,
the encryption takes about five seconds, the result can not
compete with the AES embedded method, but it is still
reasonably acceptable under human operation.

0

1000

2000

3000

4000

5000

6000

Number of
cycles

Our
Implementation
on Intel 8051

3085 4377 5101

Daemon/Rijmen's
Implementation
on 8051

3168 4515 5221

AES-
128

AES-
192

AES-
256

Figure 7: The Comparison of Daemon/Rijmen [5] and
Our Implementation Results

7 Conclusions
AES Embedded Method has proven applicable

with the data encryption time around 0.5ms to 0.9ms.
Either the microcontroller is co-processor powered or not,
the practicability of implementing AES algorithm on
smart card has been validated. With the varies and
developing cryptographic algorithms in Europe, having a
smart card platform capable of processing middle and
high level languages with fast turn-around time like
CSOD is an advantage. Even though the AES CSOD
encryption takes around 5 seconds, this drawback is
overcame by the flexibility, convenience and security
which CSOD smart card offered

References:
[1] Wolfgang Rankl and Wolfgang Effing, Smart Card

Handbook, 2nd edition, John Wiley & Sons,2000.
[2] National Institute of Standards and Technology,

FIPS PUB 46, “Data Encryption Standard (DES),”
January 15,1977.

[3] Matthew Nelson, “Cracking DES code all in a day’s
work for security experts,” January 21, 1999. See
http://www.cnn.com/TECH/computing/9901/21/des
crack.idg/index.html

[4] National Institute of Standards and Technology,
“Advanced Encryption Standard (AES),” Federal
Information Processing Standard, FIPS PUB 197,
November 26, 2001. http://csrc.nist.gov/
publications/fips/fips197.pdf

[5] Joan Daemen and Vincent Rijmen “AES
Proposal：Rijndael,” Document Version 2, March
9,1999.

[6] NIST, AES Questions and Answers, http://
www.nist.gov/public_affairs/releases/aesq&a.htm

[7] Microsoft Corp., Smart Card for Windows
[8] SLE 66Cxxxp Security Controller Family Data

Book, Infineon Technologies AG, September 2002.
[9] ISO 7816 Part 1 to 6: Identification Cards –

Integrated Circuit(s) Cards with Contact,1987 to
1996.

[10] J. Daemen and V. Rijmen, “The Block Cipher
Rijndael,” Smart Card Research and Applications,
Springer-Verlag LNCS Vol. 1820, J.-J. Quisquater
and B. Schneier, Eds., 2000, pp. 288-296.

