
Evaluation of Cryptographic Capabilities
for the Android Platform

David González, Oscar Esparza(B), Jose L. Muñoz, Juanjo Alins,
and Jorge Mata

Network Engineering Department, Universitat Politècnica de Catalunya,
Jordi Girona 1-3, Campus Nord UPC, 08034 Barcelona, Spain

oscar.esparza@entel.upc.edu

Abstract. Future networks will be formed by millions of devices, many
of them mobile, sharing information and running applications. Android is
currently the most widely used operating system in smartphones, and it is
becoming more and more popular in other devices. Providing security to
these mobile devices and applications is a must for the proper deployment
of future networks. For this reason, this paper studies the cryptographic
structure and built-in tools in Android, and shows that the operating
system has been specially designed for plugging-in external cryptographic
modules. We conclude that the best option for providing cryptographic
capabilities is using these external modules. We show the existent options
and compare some features, like licensing, source code availability and
price. We define some requirements, evaluate each module, and provide
guidelines for developers who want to use properly security primitives.

1 Introduction

The use of mobile devices has increased intensely over the last years, and it
is becoming ubiquitous. A recent report, developed by the American research
company eMarketer, states that mobile users are picking up smartphones instead
of traditional mobile devices as they become more affordable [7]. So, trends carry
us to a future where mobile applications will be involved in a lot of aspects of
our daily life.

People use their mobile devices for more than the built-in functionalities,
which has introduced a radical change in the concept of mobile device. Today,
mobile devices are based on the idea that operating systems must support users
installing embedded applications on their devices. This transformation has cre-
ated a tempting marketplace for programmers and software companies. Thus,
both smartphone manufacturers and developers of mobile operating systems
have created centralized application market places. Well-known examples are
Google Play, which hosts 950,000 applications and produces a daily revenue of
about 12$ million for the top 200 applications [13], and App Store, which hosts
1 million applications and produces a daily revenue of 18$ million for the top 200
applications [13].

c© Springer International Publishing Switzerland 2015
R. Doss et al. (Eds.): FNSS 2015, CCIS 523, pp. 16–30, 2015.
DOI: 10.1007/978-3-319-19210-9 2



Evaluation of Cryptographic Capabilities for the Android Platform 17

From both development and research points of view, Android is the perfect
target platform. On one hand, as market analysis show, Android is the most
widespread mobile operating system [12]. Android is used by a wide range of
devices of several manufacturers, e.g. Samsung, Sony and Huawei. It has a large
number of applications available, and many software companies use one or more
of its official marketplaces as a primary source for distribution. Android is free
and open source. All development tools are available at no cost and run over
all main operating systems [26]. Anyone can inspect the Android source code,
and modify and recompile it to extend functionalities. The security of Android
devices is becoming a hot research topic as mobile applications are managing
more and more sensitive data every day.

The study carried out by William Enck et al. [8] clearly shows the need to
improve security of Android applications. The authors analyzed 1,100 popular
free Android applications and discovered several security flaws. The authors found
that many developers fail to take the necessary security precautions and sensi-
tive information was occasionally broadcast without being previously protected
by means of encryption. This is even more important, since available information
about how to develop secure applications for Android is quite reduced, especially
regarding how cryptography works in Android and which are the available tools.

This paper is focused on analyzing the cryptographic features of Android,
explaining the available tools to perform common cryptographic operations, and
evaluating their performance using a testing methodology. Our assumption is
that, given a set of security features, developers are going to map them to a set
of strong cryptographic primitives. In our opinion, this study produces relevant
results and could be of interest for both researchers and developers. This paper
states that it is possible to provide security at a high level in Android applications
today, but further efforts should be done to improve compatibility in previous,
present and future operating system versions, as Android will probably be the
leading operating system in future networks devices.

This paper is organized as follows: Sect. 1 introduces the problem of security
in Android devices and applications; Sect. 2 summarizes some previous papers
that studied performance of cryptographic tools on mobile devices, Java and
Android; Sect. 3 briefly describes how cryptography works in Android; Sect. 4
introduces our testing application and methodology; Sect. 5 includes some of the
most relevant performance results obtained with the testing application; and
finally, in Sect. 6 we can find the conclusions of the paper.

2 State of the Art

Some authors decided to analyze the level of security that mobile operating sys-
tems offer, as well as their weak points. For example, a pair of comprehensive
Android security assessments has been published by William Enck et al. [9] and
Asaf Shabtai et al. [29]. Joseph Packy Laverty et al. took a slightly different app-
roach and developed a detailed comparative analysis of security models among
Android, iOS, Black Berry and Windows Mobile [14].



18 D. González et al.

A very similar work is the proposal of Michael A. Walker [33], which pro-
poses a standard method to evaluate the cryptographic capabilities and efficiency
of Android devices. The author developed an Android testing application and
determined a list of built-in available algorithms using a HTC G1 device with
Android 1.6. As stated by the author, this initial project was meant as a starting
point for future research. The study is very elaborate and presents, as of today,
the unique available results about performance of cryptographic operations over
Android. However, the scope of the study is limited.

Jeremy S. Nightingale studied six Java cryptographic providers and devel-
oped a comparative analysis for public key cryptography [15]. Nevertheless, this
study is for the Java Platform Standard Edition (J2SE) [5], not for Android.
Other similar studies [3,4] are rich in information and contain a detailed outline
of the tools and methodologies used, but they target a different hardware.

3 Cryptography in Android

Android applications are written in a Java-based programming language, also
called Android, which is not fully compatible with Java SE standards or appli-
cations. While Java core libraries are used, Android provides additional APIs
to integrate with the operating system, the platform resources and the security
model. It is also possible to use native code in C/C++ by means of the Java
Native Interface (JNI) framework, or even writing a whole application in C/C++
[26], but this is discouraged because it makes the code non-portable.

Several versions of the operating system have been released (e.g. Froyo (2.2),
Gingerbread (2.3), Ice Cream Sandwich (4.0), etc.), and version upgrade process
has been difficult since its origins. Difficulties are mainly due to the lack of direct
control of the operating system developers over the firmware, as well as the large
range of device manufacturers. Although such fact is improving lately, statistics
show how older versions are still running on older devices in greater or lesser
extent, i.e. Gingerbread (17.8 %), Ice Cream Sandwich (14.3 %), Froyo (1.1 %),
Honeycomb (0.1 %) [24].

Like in traditional Java, the overall design of the cryptography classes in
Android is governed by the Java Cryptography Architecture (JCA), which was
inherited from Apache Harmony. However, there are some significant differences,
mainly originated by the limitations of mobile devices. The main difference is the
non inclusion of an independent version of the SunJCE provider in Android. This
means that Android does not include, by default, the same algorithms than Java.
However, no list of discrepancies between the Android built-in cryptography and
the traditional SunJCE is available at this moment.

Android source code is publicly available in a repository [1]. As usual, the
source code follows a tree structure and is divided in branches. We are going
to center in branches shown in Table 1. The core branch is libcore, which shows
that Apache Harmony ships its own cryptographic provider, Crypto [19]. Addi-
tionally, Apache Harmony includes a Java Secure Socket Extension provider
called HarmonyJSSE [21], which is based on the specifications of TLS v1 and



Evaluation of Cryptographic Capabilities for the Android Platform 19

Table 1. Built-in provider/library by branch

Provider/Library Branch

Crypto platform/libcore [19]

HarmonyJSSE platform/external/conscrypt [21]

Bouncy Castle platform/external/bouncycastle [2]

OpenSSL platform/external/openssl [23]

AndroidOpenSSL platform/external/conscrypt [22]

SSL v3 protocols. However, the number of algorithms provided by Crypto is
very limited, so Android engineers needed an alternative provider to cover all
the security requirements that applications may need. Instead of programming
their own provider from scratch, Android developers modified an existent Java
provider, Bouncy Castle [16], and set it as the default provider. The original
source code of Bouncy Castle is different from the modified version included in
Android. In particular, some algorithms have been removed and some classes
have been changed to improve both speed and memory consumption. The prob-
lem is that these changes vary depending on the Android version. In addition,
some algorithms within Bouncy Castle have been combined with a well-known
cryptographic library written in C, OpenSSL [32].

Our source code inspection revealed that the reduced set of capabilities pro-
vided by the providers Crypto, DRLCertFactory and HarmonyJSSE remains
constant, while security services provided by Bouncy Castle vary from version
to version. However, the support of SSL and TLS protocols is guaranteed since
API level 1 [20]. Therefore, all versions of the platform provide built-in tools for
establishing a secure communication between an Android device and a server
machine. For implementing both SSL and TLS, Android uses code from both
Bouncy Castle and OpenSSL. A list of all built-in providers, with the minimum
version from which are included, is detailed in Table 2.

Even though Android ships with a set of built-in tools which cover most usual
cryptographic algorithms and standards, we cannot be sure that such built-in
libraries are updated with the last patches for all versions of the operating sys-
tem. Moreover, there are discrepancies between versions, and older versions,

Table 2. Built-in cryptographic service providers

Provider From version

Crypto 1.5 or previous

HarmonyJSSE 1.5 or previous

DRLCertFactory 1.5 or previous

Bouncy Castle 1.5 or previous

AndroidOpenSSL 3.0



20 D. González et al.

which still have an important market share, lack some popular algorithms, e.g.
Gingerbread (2.3) lacks SHA224 and ECDSA. For this reason we recommend
developers to use in their applications the last version of a third-party crypto-
graphic service provider, as this will allow them to control critical updates.

4 Testing Application

We recommend developers to include external cryptographic service providers
in their applications. For this reason, we have developed a simple application to
test these providers and rank their performance.

Cryptographic providers targeting the Android platform (or stating being
compatible with it) do not seem to abound. We only found these two options:

– IAIK-JCE, which can be downloaded from [10].
– SpongyCastle: as previously mentioned, Android ships with a cut-down ver-

sion of Bouncy Castle. But installing the classic Bouncy Castle library is
impossible due to classloader conflicts, as the names for most packages and
classes are the same. SpongyCastle [31] is a repackage of the classic Bouncy
Castle library provided by Roberto Tyley, an independent developer. In our
tests, we are going to use a repackage of the classic Bouncy Castle library,
which was performed by following the guidelines of Roberto Tyley. In fact, we
do not recommend developers to use SpongyCastle directly in applications,
but as a guide for repackaging the classic Bouncy Castle. The main reason is
that this project maintenance relies on this only developer.

We are also interested in traditional cryptographic providers for Java that may be
compatible with Android. Four non-commercial cryptographic Java
libraries were found:

– Logi Crypto [28], which was discarded because it was not designed to be com-
patible with the JCA/JCE structure, and hence cannot be easily integrated
into Android.

– GNU Crypto [11], which was not well documented, and its interaction with
the JCA/JCE structure was messy. After integrating the provider and making
some quick encryption/decryption tests, we realized that GNU Crypto was
slow and difficult to integrate into Android, so it was discarded too.

– Cryptix [27], which was inspected and tested and no compatibility problems
were found.

– FlexiProvider [17], which was also tested with no problems.

The summary of the available providers compatible with Android is detailed in
Table 3.

4.1 Cryptographic Requirements

Choosing an appropriate cryptographic algorithm is essential in any system with
security requirements. A large number of cryptographic algorithms exist, but the



Evaluation of Cryptographic Capabilities for the Android Platform 21

Table 3. External cryptographic service providers

Provider Last version

Bouncy Castle 1.50

Cryptix 1.3

FlexiProvider 1.7.7

IAIK-JCE 5.2

devices used for communications sometimes have limited processing capacity and
reduced storage capacity. So, it is important to have available algorithms that
work correctly in devices with scarce resources, while maintaining a high level
of security. Moreover, algorithms should be widely tested through time, and
security holes should be solved with the help of the cryptographic community.

Thus, we prepared a list of requirements that cryptographic providers must
accomplish in order to provide enough tools for implementing common security
features. For completeness of the study, our proposal not only addresses com-
mon cryptographic algorithms, but other related features. The coverage of these
features takes into account additional capabilities that are usually required in
application security, e.g. opening and creating digital envelopes, securely distrib-
uting key pairs, establishing secure communications, etc. The complete list of
requirements is specified in Table 4.

The proposal of algorithms and standards to evaluate is mostly based on
the recommendations of the NIST [30]. We focused on the Federal Information
Processing Standards (FIPS), a compilation of standards and guidelines issued
by NIST for government use. Nevertheless, we have taken into account recom-
mendations of other institutions (as detailed in Table 4), e.g. ITU, IETF, RSA
Security Labs. Although Triple-DES and SSL are no longer recommended by
NIST, we consider them for compatibility reasons since they still are widely
used. Table 5 complements Table 4 by specifying recommended parameters.

4.2 Coverage of Requirements

By inspecting the official documentation of the selected providers, the classes in
charge of registering the different algorithms, and the source code, we prepared
Tables 6 and 7. These tables detail the coverage of algorithms and standards
according to requirements introduced in Subsect. 4.1. Support of SSL and TLS
is guaranteed since API level 1 [20], and covered by the operating system. Table 8
details the supported protocol versions for the built-in Android JSSE Provider.

4.3 Testing Framework

We developed a testing application to carry out performance tests in an easy
and efficient way. We also established a testing methodology to set up a fitting
benchmarking environment. The testing application has been designed so that



22 D. González et al.

Table 4. Requirements for development of secure applications

Requirement Type Standard

SHA-1 Hash Function FIPS 180

SHA-256 Hash Function FIPS 180

HMAC Message Authentication Code FIPS 198

PBKDF2 Key Derivation Function PKCS#5 v2.0

AES Symmetric Cipher FIPS 197

3DES Symmetric Cipher ANSI X9.52

RSA Asymmetric Cipher PKCS#1 v1.5, PKCS#1 v2.1

RSA Signature Algorithm PKCS#1 v1.5, PKCS#1 v2.1

DSA Signature Algorithm FIPS 186

X509 Digital Certificate RFC 5280

PKCS #7 Digital Envelope PKCS#7

PKCS #12 Information Exchange Syntax PKCS#12

SSL Secure Transport Protocol RFC 6101

TLS Secure Transport Protocol RFC 2246

RFC 4346

RFC 5246

Table 5. Required algorithms with parameters

Algorithm Key length (bits) Operation mode Padding

SHA-1 N/A N/A N/A

SHA-256 N/A N/A N/A

HMAC Variable N/A N/A

PBKDF2 Variable N/A N/A

AES 128, 192, 256 CBC, OFB, CFB, CTR PKCS#5 or PKCS#7

3DES 192 CBC, OFB, CFB, CTR PKCS#5 or PKCS#7

RSA 2048 ECB PKCS#1, OAEP

RSA 2048 N/A PKCS#1, PSS

DSA 224(key) N/A PKCS#1

2048(group)

a user can select a subset of the algorithms, depending on the variants of the
algorithms to be tested, as well as the parameters to use, e.g. length of the
input, key size, number of samples, etc. Once the user finishes the set up, the
application runs the tests, and it stores all the performance data on the memory
of the device for later processing.



Evaluation of Cryptographic Capabilities for the Android Platform 23

Table 6. Coverage of algorithms

Requirement BC Cryptix Flexi IAIK

SHA1 X X X X

SHA256 X X X X

HMAC/SHA1 X X X

HMAC/SHA256 X X X

PBKDF2/HMAC/SHA1 X X1 X

PBKDF2/HMAC/SHA256 X X

AES/CBC/PKCS5 X X X

AES/CFB/PKCS5 X X X

AES/OFB/PKCS5 X X X

AES/CTR/PKCS5 X X X

3DES/CBC/PKCS5 X X X X

3DES/CFB/PKCS5 X X X X

3DES/OFB/PKCS5 X X X X

3DES/CTR/PKCS5 X X X

RSA/ECB/PKCS1 X X X X

RSA/ECB/OAEP X X X X

RSA/SHA1/PKCS1 X X X X

RSA/SHA256/PKCS1 X X X X

RSA/SHA1/PSS X X X X

RSA/SHA256/PSS X X X

DSA/SHA1/PKCS1 X X X X

DSA/SHA256/PKCS1 X X X

Table 7. Coverage of cryptographic standards

Requirement BC Cryptix Flexi IAIK

X509 X X X

PKCS7 X X

PKCS12 X X X

Table 8. Built-in secure communication protocols

Requirement HarmonyJSSE

SSL v2, v3

TLS v1



24 D. González et al.

We use the built-in function nanoTime to determine the amount of time con-
sumed by a given cryptographic operation. According to the official documen-
tation, nanoTime returns the value of the most precise system timer available
with nanosecond precision. The clock accessed is guaranteed to be monotonic
and suitable for interval timing when the interval does not span device sleep.

The key generation process required by public key cryptography is more
complex than the one required for secret key cryptography, since it involves
more costly mathematical operations which tend to be long in time. Nevertheless,
background execution and memory management are very important in Android,
because they are tightly related with power consumption and memory efficiency
[25]. For this reason, we decided to generate the secret keys in the mobile devices,
while the tests using public key algorithms took pre-generated keys. These pre-
generated keys were stored using personal identity information standards and
included beforehand on the testing application.

Another problem we found in Android was the presence of outlier measures.
Since the operating system has been devised as an application ecosystem, all
applications are kept alive as long as possible, and the scheduler considers them
all when dispensing execution time. As a consequence, we found that, even shut-
ting down all unnecessary applications, tests contained outlier measures, and
these deteriorated both mean and standard deviation values. This effect was
also noticed in the study lead by Michael A. Walker [33].

We analyzed the samples and noticed that the generation of outliers was not
periodic. Then, we redesigned the testing methodology, so that the test appli-
cation could be able to mitigate the effect of the outlier measures by itself. For
each atomic cryptographic operation to benchmark, the application performs a
previous round of measures and computes an initial estimation of the measure.
Then, uses such estimation to fix a threshold value, i.e. by multiplying the esti-
mation value by a threshold factor defined by the user. This outlier threshold
will be used later to check if the measures are out of the range of expected values.
Then, the application proceeds and gathers a second round of samples. Now the
application knows the range of expected values, so it is capable of disscarding
the outlier measures using the threshold. Once included the new methodology
in our Android testing application, we found that with a small number of dis-
carded measures (less than a 5 %) the standard deviation is considerably reduced,
around 10 and 50 times smaller depending on the parameters of the test.

5 Measures

5.1 Tuning

In Android, the CPU frequency may change depending on the power consump-
tion, affecting the device performance [6] and the reliability of the results. We
carried out some test trials using CPU Spy, confirming that the frequency kept
stable, without fluctuations, while executing the tests. For reducing the effects
of possible sources of interference, we forced quit all, non-critical, running appli-
cations and services in the device. In addition, we disconnected both Wi-Fi



Evaluation of Cryptographic Capabilities for the Android Platform 25

and Bluetooth services in order to avoid external interferences that could have
affected the behavior of the device during the tests.

Table 9. Testing Hardware

Device Hardware Operating System

Nexus S

ARM Cortex-A8
single-core
1GHz
512 MB RAM

Android 2.3
upgraded to
Android 4.1.2

Tests were carried out in a Samsung Nexus S, upgraded to Android 4.1.2.
Detailed characteristics of the testing hardware are summarized in Table 9. All
tests were conducted by gathering 10.000 samples by operation. This number of
samples does not include the additional 1.000 samples used for estimating the
value beforehand and discarding outlier measures. These numbers were chosen
after a short period of trial and error, in which we confirmed how fixing these
parameters the standard deviation of the measures decreased considerably.

5.2 Performance Evaluation

From the collected data we generated more than 20 graphics for different oper-
ations and algorithms, varying parameters, key sizes and lengths of inputted
data. Tables 10, 11 and 12 and Figs. 1, 2, 3 and 4 show a representative sample
for the most common algorithms, i.e. SHA-2, AES, RSA and DSA. Even from
these samples, one can discern several interesting trends.

Fig. 1. Mean micro-second time per byte when hashing using SHA-2 for varying data
lengths (10,000 samples, less 1 % of outliers)

For secret key cryptography, FlexiCore and IAIK-JCE are faster than Bouncy
Castle and Cryptix. FlexiCore performed better for SHA-1 while IAIK-JCE
performed better for SHA-2. For example, according to Table 10, FlexiCore is



26 D. González et al.

Fig. 2. Mean micro-second time per byte when encrypting using AES with a 128-bit
key for varying data lengths and operation modes (10,000 samples, less 2% of outliers)

Fig. 3. Mean micro-second time per byte for encrypting using RSA with PKCS#1
padding (10.000 samples, less 1 % of outliers)

Fig. 4. Mean micro-second time per byte for signing using DSA/SHA-1 (10.000 sam-
ples, less 0.1 % of outliers)

Table 10. Average time for hashing a 100-bytes input data with SHA-1 & SHA-2
(ns/byte)

Algorithm BC Cryptix Flexi IAIK

SHA-1 724 715 572 603

SHA-2 1309 2270 731 671



Evaluation of Cryptographic Capabilities for the Android Platform 27

Table 11. Average time for encrypting a 100-bytes input data with AES & 3DES
(µs/byte)

Algorithm BC Cryptix Flexi IAIK

AES/CBC/PKCS#5, 128-bits key 4.65 N/A 4.19 4.14

3DES/CBC/PKCS#5, 192-bits key 8.73 5.66 6.42 7.33

Table 12. Average time for encrypting a 128-bytes input data with RSA & for signing
a 100-bytes input data with DSA (µs/byte)

Algorithm BC Cryptix Flexi IAIK

RSA/PKCS#1, 2048-bits key 16.88 15.87 15.08 32.96

DSA/SHA-1, 224-bits key 190.73 N/A 179.96 196.02

35 ns/byte faster than IAIK-JCE when hashing 100 bytes using SHA-1, and
both FlexiCore and IAIK-JCE are more than 100 ns/byte faster when compared
with Bouncy Castle and Cryptix. By the contrary, when hashing 100 bytes using
SHA-2 the differences increase: IAIK-JCE is 60 ns/byte faster than FlexiCore,
and both FlexiCore and IAIK-JCE are about 600 ns/byte faster than Bouncy
Castle. Figure 1 shows how such differences remain similar for smaller and longer
lengths of the input data. Although it is not included in this data sample, our
study showed that Bouncy Castle is the fastest option when generating HMACs.

When encrypting, IAIK-JCE performed better for AES and Cryptix for
3DES. Table 11 shows how, when encrypting a 100-bytes datablock using CBC
mode and PKCS#5 padding, IAIK-JCE performed 0.05 µs/byte better for AES
than FlexiCore, the second best, and Cryptix performed 0.76 µs/byte better for
3DES, being FlexiCore the second best too. Just remark the small differences of
speed between IAIK-JCE and FlexiCore, as shown in Figs. 1 and 2. From Figs. 1
and 2 one can deduce that Cryptix is the slowest provider. Meanwhile, Bouncy
Castle keeps decent differences with IAIK-JCE and FlexiCore.

For public key cryptography, FlexiCore is the fastest provider for encrypt-
ing and signing with RSA, and for signing with DSA. However, differences were
small. For example, according to Table 12, when encrypting a datablock of 128
bytes with RSA and a 2048-bits key, there was a difference of 0.79µs/byte
with Cryptix and of 1.8µs/byte with Bouncy Castle. Another example, are
the differences of 10.77µs/byte, between FlexiCore and Bouncy Castle, and of
16.06µs/byte, between FlexiCore and IAIK-JCE, when signing a datablock of
100 bytes with DSA and a 224-bits key.

An important trend we observed in Fig. 3, is that IAIK-JCE is the slow-
est provider when encrypting and verifying signatures with RSA. Nevertheless,
without being able to inspect the source code, we cannot come up with a logic
explanation for this issue. IAIK-JCE performed as well as FlexiCore and Bouncy
Castle when signing and verifying with DSA as indicates Fig. 4.



28 D. González et al.

These small differences regarding performance when using public key algo-
rithms (see Figs. 3 and 4) were expected. In public key algorithms, the modular
product, exponentiation and inversion operations are more expensive in terms
of time than other operations, e.g. hashing. Therefore, the speed of these mod-
ular operations is what ultimately defines the speed of the implementations.
Speeds were so close because all four cryptographic providers use the Android
native implementation of the class BigInteger [18]. One can corroborate this by
inspecting the source code of Bouncy Castle, Cryptix and FlexiCore.

If we consider both performance results and coverage of requirements, as well
as source code availability and license, FlexiCore and Bouncy Castle are, individ-
ually, very good choices. Both providers have permissive licenses, give access to
the source code and offer a good coverage of usual cryptographic requirements:
Bouncy Castle covers them all, while FlexiCore covers a large number. FlexiCore
provides a very fast implementation, and Bouncy Castle is slower, but remains
close in performance. Nevertheless, it is not clear how the inclusion of the ASN.1
CoDec package affects in the use of FlexiCore, since it is GPL licensed.

IAIK-JCE is also recommended in case developers already purchased a com-
mercial license. IAIK-JCE covers all requirements, it shows a good performance
and it is specially intended for Android, unlike the previous providers. More-
over, IAIK-JCE provides the fastest implementations for the common algorithms
SHA-2 and AES. Despite differences are small, in general FlexiCore and IAIK
showed better performance.

6 Conclusions

Providing security to Android devices and applications is, for sure, one of the
main objectives to achieve prior to the proper deployment of future networks.
Android has inherited the cryptographic design of Java. Cryptographic services
are provided by a series of modules, some of them are built-in, e.g. Bouncy Castle,
Crypto, HarmonyJSSE, etc. Nevertheless, we cannot guarantee that these built-
in modules are updated with the last patches. Moreover, old versions of Android,
some still with an important market share, are limited in functionality and lack
some common algorithms. For this reason, our recommendation is using a third-
party provider to provide security to applications.

All the evaluated providers have both positive and negative aspects. Bouncy
Castle covers all usual cryptographic requirements, provides access to the source
code and is free. So, Bouncy Castle would be a good option if we are interested
on covering a wide range of algorithms and standards at no cost. FlexiCore
provides access to the source code and it is free too, but covers a slightly smaller
range of requirements. However, FlexiCore has proved its superiority in speed,
being the fastest provider for a lot of common algorithms, e.g. SHA-1, RSA,
DSA. So, FlexiCore is the best option if we are interested on speed at no cost.
IAIK-JCE covers all usual cryptographic requirements and has proved to be very
fast. Nevertheless, it requires purchasing a commercial license when it is used
in commercial products. So, IAIK-JCE is the best option for those developers



Evaluation of Cryptographic Capabilities for the Android Platform 29

who are interested on both speed and coverage of algorithms, and are willing
to pay. We do not recommend using Cryptix, since covers a very limited range
of requirements, and it is deprecated, meaning that its maintenance has been
discontinued long time ago.

Acknowledgments. This work was supported partially by the Spanish Research
Council with Project SERVET TEC2011-26452, and by Generalitat de Catalunya with
Grant 2014-SGR-1504 and 2014-SGR-375 to consolidated research groups.

References

1. Android Git repositories. https://android.googlesource.com/
2. Bouncy Castle repository. Android Git repositories. https://android.googlesource.

com/platform/external/bouncycastle/
3. Abusharekh, A.: Comparative Analysis of Multi-Precision Arithmetic Libraries for

Public Key Cryptography. Ph.D. thesis, George Mason University, Washington,
DC (2004)

4. Bingmann, T.: Speedtest and comparsion of open-source cryptography libraries
and compiler flags. https://panthema.net/2008/0714-cryptography-speedtest-
comparison/

5. Campione, M., Walrath, K., Huml, A.: The Java Tutorial: A Short Course on the
Basics, 3rd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2000)

6. Carroll, A., Heiser, G.: An analysis of power consumption in a smartphone. In:
Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Con-
ference, USENIXATC 2010, pp. 21–21. USENIX Association, Berkeley (2010)

7. eMarketer Inc.: 2 billion consumers worldwide to get smartphones by 2016
(2014). http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-
Smartphones-by-2016/1011694

8. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application
security. In: Proceedings of the 20th USENIX Conference on Security, SEC 2011,
pp. 21–21. USENIX Association, Berkeley (2011)

9. Enck, W., Ongtang, M., McDaniel, P.: Understanding android security. IEEE
Secur. Priv. 7(1), 50–57 (2009)

10. Institute for Applied Information Processing and Communication. Gratz Univer-
sity of Technology. Core Crypto Toolkits. https://jce.iaik.tugraz.at/sic/Products/
Core-Crypto-Toolkits

11. Free Software Foundation. The GNU Crypto project. http://www.gnu.org/
software/gnu-crypto/

12. Goasduff, L., Rivera, J.: Gartner says smartphone sales surpassed one billion units
in 2014 (2015). http://www.gartner.com/newsroom/id/2623415

13. Jones, C.: Google Play catching up to Apple’s App Store (2013).
http://www.forbes.com/sites/chuckjones/2013/12/19/google-play-catching-up-to-
apples-app-store/

14. Laverty, J.P., Wood, D.F., Kohun, F.G., Turchek, J.: Comparative analysis of
mobile application development and security models. Issues Inf. Syst. 12(1), 301–
312 (2011)

15. Nightingale, J.S.: Comparative analysis of Java cryptographic libraries for public
key cryptography (2006). http://teal.gmu.edu/courses/ECE746/project/reports
2006/JAVA MULTIPRECISION report.pdf

https://android.googlesource.com/
https://android.googlesource.com/platform/external/bouncycastle/
https://android.googlesource.com/platform/external/bouncycastle/
https://panthema.net/2008/0714-cryptography-speedtest-comparison/
https://panthema.net/2008/0714-cryptography-speedtest-comparison/
http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694
http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694
https://jce.iaik.tugraz.at/sic/Products/Core-Crypto-Toolkits
https://jce.iaik.tugraz.at/sic/Products/Core-Crypto-Toolkits
http://www.gnu.org/software/gnu-crypto/
http://www.gnu.org/software/gnu-crypto/
http://www.gartner.com/newsroom/id/2623415
http://www.forbes.com/sites/chuckjones/2013/12/19/google-play-catching-up-to-apples-app-store/
http://www.forbes.com/sites/chuckjones/2013/12/19/google-play-catching-up-to-apples-app-store/
http://teal.gmu.edu/courses/ECE746/project/reports_2006/JAVA_MULTIPRECISION_report.pdf
http://teal.gmu.edu/courses/ECE746/project/reports_2006/JAVA_MULTIPRECISION_report.pdf


30 D. González et al.

16. The Legion of Bouncy Castle. Boncy Castle. http://www.bouncycastle.org/java.
html

17. Research Group of Prof. Dr. Johannes Buchmann. FlexiProvider. http://www.
flexiprovider.de/

18. Android Open Source Project. BigInteger class, Android API. http://developer.
android.com/reference/java/math/BigInteger.html

19. Android Open Source Project. Crypto Provider, Android platform ‘libcore’
repository. Android Git repositories. https://android.googlesource.com/platform/
libcore/+/master/luni/src/main/java/org/apache/harmony/security/provider/
crypto/CryptoProvider.java

20. Android Open Source Project. javax.net.ssl package, Android API. http://
developer.android.com/reference/javax/net/ssl/package-summary.html

21. Android Open Source Project. JSSE Provider, Android platform ‘conscrypt’
repository. Android Git repositories. https://android.googlesource.com/platform/
external/conscrypt/+/master/src/main/java/org/conscrypt/JSSEProvider.java

22. Android Open Source Project. OpenSSL Provider, Android platform ‘conscrypt’
repository. Android Git repositories. https://android.googlesource.com/platform/
external/conscrypt/+/master/src/main/java/org/conscrypt/OpenSSLProvider.
java

23. Android Open Source Project. OpenSSL repository. Android Git repositories.
https://android.googlesource.com/platform/external/openssl/+/master

24. Android Open Source Project. Platform versions. http://developer.android.com/
about/dashboards/index.html?utm source=ausdroid.net#Platform

25. Android Open Source Project. Processes and threads. http://developer.android.
com/guide/components/processes-and-threads.html

26. Android Open Source Project. Android Developers (2014). http://developer.
android.com/index.html

27. The Cryptix Project. Cryptix. http://www.cryptix.org/
28. Ragnarsson, L.: The logi.crypto Java package. http://www.logi.org/logi.crypto/

devel/
29. Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., Glezer, C.: Google

android: a comprehensive security assessment. IEEE Secur. Priv. 8(2), 35–44 (2010)
30. National Institute Standards and Technology. Cryptographic Toolkit. http://csrc.

nist.gov/groups/ST/toolkit/index.html
31. Roberto Tyley. SpongyCastle. http://rtyley.github.io/spongycastle/
32. Viega, J., Chandra, P., Messier, M.: Network Security with Openssl, 1st edn.

O’Reilly & Associates Inc., Sebastopol (2002)
33. Walker, M.A.: Standard method of evaluating cryptographic capabilities and effi-

ciency for devices with the Android platform (2010). https://www.truststc.org/
education/reu/10/Papers/WalkerM paper.pdf

http://www.bouncycastle.org/java.html
http://www.bouncycastle.org/java.html
http://www.flexiprovider.de/
http://www.flexiprovider.de/
http://developer.android.com/reference/java/math/BigInteger.html
http://developer.android.com/reference/java/math/BigInteger.html
https://android.googlesource.com/platform/libcore/+/master/luni/src/main/java/org/apache/harmony/security/provider/crypto/CryptoProvider.java
https://android.googlesource.com/platform/libcore/+/master/luni/src/main/java/org/apache/harmony/security/provider/crypto/CryptoProvider.java
https://android.googlesource.com/platform/libcore/+/master/luni/src/main/java/org/apache/harmony/security/provider/crypto/CryptoProvider.java
http://developer.android.com/reference/javax/net/ssl/package-summary.html
http://developer.android.com/reference/javax/net/ssl/package-summary.html
https://android.googlesource.com/platform/external/conscrypt/+/master/src/main/java/org/conscrypt/JSSEProvider.java
https://android.googlesource.com/platform/external/conscrypt/+/master/src/main/java/org/conscrypt/JSSEProvider.java
https://android.googlesource.com/platform/external/conscrypt/+/master/src/main/java/org/conscrypt/OpenSSLProvider.java
https://android.googlesource.com/platform/external/conscrypt/+/master/src/main/java/org/conscrypt/OpenSSLProvider.java
https://android.googlesource.com/platform/external/conscrypt/+/master/src/main/java/org/conscrypt/OpenSSLProvider.java
https://android.googlesource.com/platform/external/openssl/+/master
http://developer.android.com/about/dashboards/index.html?utm_source=ausdroid.net#Platform
http://developer.android.com/about/dashboards/index.html?utm_source=ausdroid.net#Platform
http://developer.android.com/guide/components/processes-and-threads.html
http://developer.android.com/guide/components/processes-and-threads.html
http://developer.android.com/index.html
http://developer.android.com/index.html
http://www.cryptix.org/
http://www.logi.org/logi.crypto/devel/
http://www.logi.org/logi.crypto/devel/
http://csrc.nist.gov/groups/ST/toolkit/index.html
http://csrc.nist.gov/groups/ST/toolkit/index.html
http://rtyley.github.io/spongycastle/
https://www.truststc.org/education/reu/10/Papers/WalkerM_paper.pdf
https://www.truststc.org/education/reu/10/Papers/WalkerM_paper.pdf


http://www.springer.com/978-3-319-19209-3


	Evaluation of Cryptographic Capabilities for the Android Platform
	1 Introduction
	2 State of the Art
	3 Cryptography in Android
	4 Testing Application
	4.1 Cryptographic Requirements
	4.2 Coverage of Requirements
	4.3 Testing Framework

	5 Measures
	5.1 Tuning
	5.2 Performance Evaluation

	6 Conclusions
	References


